Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Dental Anesthesia and Pain Medicine ; : 155-160, 2020.
Article | WPRIM | ID: wpr-835684

ABSTRACT

Submental or submandibular intubation has been reported to cause fewer complications than tracheostomy. However, the risk of infection is always inherent because oral wounds are exposed to microbial flora and bacteria in the oral cavity. A novel technique of submandibular intubation was devised to reduce infection and injury to the soft tissues. We would like to report a novel safe technique that can be performed in patients requiring submental or submandibular intubation. This is the first report of submandibular intubation using a sterile disposable camera cable drape. This novel technique of submandibular intubation is safer, more sterile, easier, and less invasive than conventional submandibular intubation.

2.
Experimental & Molecular Medicine ; : 30-37, 2010.
Article in English | WPRIM | ID: wpr-104281

ABSTRACT

The cytoplasmic polyadenylation element (CPE)-binding protein (CPEB) binds to CPE containing mRNAs on their 3' untranslated regions (3'UTRs). This RNA binding protein comes out many important tasks, especially in learning and memory, by modifying the translational efficiency of target mRNAs via poly (A) tailing. Overexpressed CPEB has been reported to induce the formation of stress granules (SGs), a sort of RNA granule in mammalian cell lines. RNA granule is considered to be a potentially important factor in learning and memory. However, there is no study about RNA granule in Aplysia. To examine whether an Aplysia CPEB, ApCPEB1, forms RNA granules, we overexpressed ApCPEB1-EGFP in Aplysia sensory neurons. Consistent with the localization of mammalian CPEB, overexpressed ApCPEB1 formed granular structures, and was colocalized with RNAs and another RNA binding protein, ApCPEB, showing that ApCPEB1 positive granules are RNA-protein complexes. In addition, ApCPEB1 has a high turnover rate in RNA granules which were mobile structures. Thus, our results indicate that overexpressed ApCPEB1 is incorporated into RNA granule which is a dynamic structure in Aplysia sensory neuron. We propose that ApCPEB1 granule might modulate translation, as other RNA granules do, and furthermore, influence memory.


Subject(s)
Animals , Aplysia/genetics , Fluorescence Recovery After Photobleaching , RNA/genetics , Sensory Receptor Cells/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL